

1

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Aalto University School of Engineering

Δ?

		1	PROBLEM			VAR	ABLES	1
Algorithm	Single	Multi-	Constrained	Multi- modal	Automatic Constraint handling	Discrete	Continuous	Parallel Computing
Binary NSGA-II	x	x	x		x	x	x	x
BINARY Pareto Archive NSGA-II	x	x	x		X	x	x	x
Binary OMNI-Optimizer	x	x	x	x	x	x	x	x
Real Coded NSGA-II	x	x	x		x		x	x
Real Coded Pareto Archive NSGA-II	x	x	x		x		x	x
Real Coded OMNI-Optimizer	x	x	x	x	x		x	x
Hooke-Jeeves	x		x		x		x	
Hybrid Algorithm	x		x		x	x	x	x
Brute-Force	x	x	x	x		x	x	x
Random Search	x	x	x	x		x	x	x
andom Search	x	x	x	x		x	x	x

🚣 мово							
File Continuous var	iables	Discret	e Variables	Functions	Algorith	m Simulatio	n
Add variable	Delete	variable	- unumes	. unctions	Algorit	Simulatio	
Name Noor	0.0	lin	Max 1.0	Delir %FloorTi	niter hick% f	Function	0.05
Max Delimiter Function Step CAN	NCEL	1 9 10	6RoofThick% oof+0.299 .05 (DK			

Add variable Delete variable
Name Values Delimiter Functi
lass 1.4,1.0 %uGlass%
Delimiter %eff_of_HR%
Function
CANCEL OK

Continuous	variables Discrets Mariat			
Continuous	warnen des Enserrene Variat	les Functions Algorithm Simulation		
in the second second	Jacrete varia	and another regeration Sintalation		
Add Functi	tion Delete Function			
Name	type	Delimiter		Formula
n1	Other	monthly_heating_electricity(1)		
n2	Other	monthly_heating_electricity(2)	🚔 Add function	
n3	Other	monthly_heating_electricity(3)	Hama	01
n4	Other	monthly_heating_electricity(4)	nane	
n5	Other	monthly_heating_electricity(5)	Турс	Less or Equal to 0 👻
n6	Other	monthly_heating_electricity(6)	Delimiter	
n7	Other	monthly_heating_electricity(7)	Deminier	
n8	Other	monthly_neating_electricity(8)	Function	Cost-6000
n9	Other	monthly_neating_electricity(9)		· · · · · · · · · · · · · · · · · · ·
n10 n11	Other	monthly_neating_electricity(10)		
n12	Other	monthly heating electricity(17)	CANCEL	ОК
heating	Min	internally_rectandig(12)	m1+m2+m3+m4+m5+m6+m7+m	n8+m9+m10+m11+m12
ost	Min		floor*39455+roof*3675+wall*655;	3+(eff of HR-0.7)*7300+(1.4-uGlass)*992.5
				- ((doilloo) oorio

🕌 мово		
File		
Continuous variables	Discrete Variables Functions Algorithm	n Simulation
Model	file C:\optitemplate	Browse
Input	file ida_lisp.ida	
Outpu	t file IDA_LISP.END	
Comr	nand cmd /x/c "start /D"!path!" /WAIT /MIN ida i	

DESIGN VARIABLES

- Cooling beam operating temperatures
- Water radiator night set-back temperatures
- Night cooling: set temperatures and operating times
- Window Shading
- Ventilation air supply temperature
- U-glazing

Aalto University School of Engineering

Design variables		х	Description	First step		
				LB	UB	
AHU	Supply air temp. profile	<i>X</i> 1	T_s at ODT $\leq 16 [^{\circ}C]^a$	16	24	
		X2	T_s at ODT $\ge 24 [°C]^a$	16	24	
	Night ventilation	X3	NV is enabled if $ODT \ge X_3$ [°C]	5	20	
	control strategy (NV)	X4	NV is enabled if $T_{exh} - ODT \ge X_4 [°C]$	1	3	
		Xs	NV is enabled if $T_{exh} \ge X_5 [\circ C]$	18	24	
		Xs	T _s drop X ₆ degree during NV [°C]	5	10	
		X7	NV is not enabled X ₇ [h] before the occupation	0	7	
		Xs	NV is not enabled X ₈ [h] after the occupation	0	6	
North Office	Cooling beam	Xo	Max. power of the cooling beam [W]	200	600	
		X10	dT(coolant) at max power [°C]	2	5	
		X11	dT(zone air - coolant) at max power [°C]	6	9	
	Water radiator	X12	Night set-back temperature [°C]	18	21	
		X13	Set-point temperature [°C]	20	21.5	
		X14	Control band [°C]	0.3	3	
	Window	X15	Window U-value [W/(m ² K)]	1	2.5	
		X16	Internal shading darkness	Light	Dark	
South Office	Cooling beam	X17	Max. power of the cooling beam [W]	200	600	
		X18	dT(coolant) at max power [°C]	2	5	
	72	X19	dT(zone air - coolant) at max power [°C]	6	9	
	Water radiator	X20	Night set-back temperature [*C]	18	21	
		X21	Set-point temperature [°C]	20	21.5	
		X22	Control band [°C]	0.3	3	
	Window	X23	Window U-value [W/(m ² K)]	1	2.5	
		X24	Internal shading darkness	Light	Dark	

Continuous varia	bles Discrete	e Variables	Functions	Algorithm Simula	tion		
Add variable	Delete variable	Modify varia	ble				
Name	Min		Max	Delimiter	Function	Step	
T_low	16.0	24.0		%T_low%		4.0	
T_high	16.0	24.0		%T_high%		1.0	
T_NV_amb	5.0	20.0		%T_NV_amb%	-	3.5	
T_NV_add	1.0	3.0		%T_NV_add%	-	3.5	
T_NV_ret	18.0	24.0		%T_NV_ret%	-	1.5	
T_NV_addset	5.0	10.0		%T_NV_addset%		1.25	
NV_A	0.0	7.0		%NV_A%	7-NV_A	0.05	
NV_B	0.0	6.0		%NV_B%	18+NV_B	0.05	
CBpower_N	200.0	600.0	6	%CBpower_N%		100.0	
dTliq_N	2.0	5.0		%dTliq_N%		0.05	_
DTa_N	6.0	9.0		%DTa_N%		0.5	_
NSB_N	18.0	21.0		%NSB_N%	-	0.5	
WRSP_N	20.0	21.5		%WRSP_N%	-	0.05	
WRDB_N	0.3	3.0		%WRDB_N%	-	0.05	
H_O_N	1.0	2.5		%H_O_N%		0.05	
M_G_N	0.0	0.15	7	%M_G_N%	0.46-M_G_N	0.01	
CBpower_S	200.0	600.0	e	%CBpower_S%	-	50.0	
d liiq_S	2.0	5.0		%d11iq_9%	-	0.5	
DIA_S	6.0	9.0		%Dta_9%	-	0.05	
NSB_S	18.0	21.0		%NSB_S%	-	1.0	
WRSP_S	20.0	21.5		%WRSP_S%		0.05	_
WRDB_S	0.3	3.0		%WRDB_5%		0.4	
H_U_S	1.0	2.0		76H_U_5%	0.10.11.0.0	0.05	_
W_G_S	0.0	0.15		1%01WI_G_8%	0.40-11_0_5	0.01	_

🕌 MOBO				
Continuous variables	Discrete Variables	Functions Algo	ithm Simulation	
Add variable Delet	e variable Modify var	iable		
Name	Values	Delimiter	Function	
MITIN	0.1	%M T N%	0.04+M G N	
MTS	0.1	%M T S%	0.04+M G S	
Mw_N	0,1	%Mw_N%	CBpower_N/(dTliq_N*4187)	
K2_N	0,1	%K2_N%	CBpower_N/(2*pow(DTa_N,1.5))	
K1_N	0,1	%K1_N%	CBpower_N*0.25/(2*pow(DTa_N,1.5))	
Mw_S	0,1	%Mw_S%	CBpower_S/(dTliq_S*4187)	
K2_S	0,1	%K2_S%	CBpower_S/(2*pow(DTa_S,1.5))	
K1_S	0,1	%K1_S%	CBpower_S*0.25/(2*pow(DTa_S,1.5))	

MOBO A NEW SOFTWARE FOR PERFORMANCE	MULTI-OBJECTIVE BUILDING OPTIMIZATION	
Matti Palonen ¹ , Mohamed ¹ Aalto University ² VTT Technical Research Cen	l Hamdy ¹ , and Ala Hasan ² y, Espoo, Finland ttre of Finland, Espoo, Finland	
ABSTRACT	REVIEW	
This paper introduces a new software developed for building performance optimization. MOBO is a generic freevare able to handle single and multi- objective optimization problems with continuous and discrete variables and constraint functions. It can be that a library of different types of algorithms (evolutionary, deterministic, hybrid, exhaustive and random), and is able to handle multi-modal functions and have automatic constraint handling. The input is algebraic formation was strandard symbol. The output can be viewed by two graphs that show the progress of the optimization. A beat version of MOBO is available for download and use. INTEODUCTION By building optimization, at heat version of these software and the strandard symbol. The desire defined decision variables, among huge numbers of possible combinations, which are able to achieve defined decision variables, among huge numbers of possible combinations, which are able to achieve defined conficting objective functions and a conditioning (HVAC) systems, the centralizedon-site energy generation systems etc. Examples of the objective size minimization of environmental conditioning (HVAC) systems, the centralizedon-site energy generation or indoor and quality, energy efficiency, etc. These can be achieved individually as subject objectives on multians functions may indicate starsfying, or not violating different criteria (e.g. thermal control level, tota) contention may indicate starsfying, or not violating different criteria (e.g. thermal contor level, tota) investment cot limit, primary energy limit etc.). Currently, there are many building polyces, and ageneric freevare and can full the whortage recognised in the available tools. These were out main motivations for developing MOBO, a Multi-	This section reviews some available optimization tools that have been used for building performance optimization. Table 1 gathers some main features of the reviewed tools. These tools can be classified into two categories: univolution and generic tools. Usotonized optimization a tool Optimization and the test of the test of the test optimization. These tools are combunitous of optimization algorithms/approxches and building performance simulation engines. In Opt-E-Phus (Ellis et al. 2006), EnergyPhin optimization algorithms/approxches and building performance simulation engines. In Opt-E-Phus (Ellis et al. 2006), EnergyPhin optimization algorithms/approxches and building performance simulation engines. In Opt-E-Phus (Ellis et al. 2006), EnergyPhin optimization strategies. Opt-E-Phin is a collection of imput and output files, system directories, and computer routines that use an XML data model to massfer information among its various components. It allows: distributed programming and supports optimization and the visualization of its tradespace is immed (Filager et al. 2006). GENE_ARCH (Caldas, 2006) has scalable geometry pather of the strate et al. 2005) includes a generation function and on the strategies of the strategies (Caldas, 2008 ad 2011). BEopPhi ⁴⁴ (Christenser et al. 2005) includes a product four strategies (Coll Mall and the stretere building options (heating, venthing, and air- conditioning system type, envelope constructions, etc) be used in the optimization GENEPA coll shallows the stretere building options (heating, venthing, and air- conditioning system type, envelope constructions, etc) be used in the optimization generics. This allows the use of the polymization generics, this illows the uset of the polymization generics. This illows the uset of the polymization generics. This illows the uset of the polymization generics, this illows the uset of the polymization generics. This illows the uset of the polymization generics. This illows the uset of the polymization generics. This illows the use	BS 13 Conference paper

MOBO DOWNLOAD	
Teta ()////////////////////////////////////	
🔄 🕲 mmu žesenardic.org/task.php	P 🖡 🏦
🔊 Mozt Valzed 🔮 Getting Started 📔 Leitest Headines 🙀 http://www.googlead	
IBPSA-NORDIC The Nordic regional affiliate of IBPSA-World	
HOME ABOUT NEWS PEOPLE MEMBERSHIP LIBRARY CONTACT SPONSORS BUILDSIM-NORDIC 2012 CONFERENCE TOOLS	
TOOLS MOBO ANEW SOFTWARE FOR MULTIOBJECTIVE BUILDING PERFORMANCE OPTIMIZATION MOBO is a generic freeware able to handle single and multi-objective optimization problems with continuous and discrete variables and constraint functions. It is a library of different types of algorithms (evolutionary, deterministic, hybrid, exhaustive and random), and is able to handle multi-mobal functions and have automatic constraint handling. The input is fed by a (OI). The user can write the input by algebraic formulae using standard symbols. The output on be viewed by to vergarib atta have two the rygress of the optimization. This tools has been developed through the project "Optimal Multi-Objective Design of Integrated Renewable Energy Systems and Buildings" PI: Ala Hasan (ala.hasan(at)vtt.fi) funded by the Academy of Finland 2010-2015. MOBO develop team is currently seeking users for MOBO beta 0.2a. Bug reports and questions related to MOBO and hese automatic to MOBO Software, please fill the form below. By pushing Submit buttton you agree to accept the terms of MOBO liense agreement. You can download the liense text from here Please enter your name, organisation and email address. Notifications about the updates of MOBO will be send to your email. Name Organisation Mare Organisation	