Capacities in Shopping centres to supply grid services

Matthias Haase, Ruth Woods and Kristian Skeie
SINTEF Building and Infrastructure
25/09/2014
Capacities in Shopping centres to supply grid services

Content

- Background
- Purpose
- Theoretical framework
- Results and conclusions
- Implications for ‘Resilience the New Research Frontier’
Background

The CommONEnergy project wants to transform shopping malls into lighthouses of energy efficient architectures and systems.

The objective is to re-conceptualize shopping malls through deep retrofitting utilizing an holistic systemic approach involving innovative technologies and solution sets.

Performance targets:

- Up to 75% reduction of energy demand (factor 4)
- Power peak shaving
- 50% increased share of renewable energy source favoured by intelligent energy management and effective storage
- Improvement of comfort and health conditions for occupants and visitors
Capacities in Shopping centres to supply grid services

CommONEnergy

Partners

- Monitoring and control system manufacturer
- HVAC, Refrigeration and Lighting manufacturer
- Storage systems manufacturers
- Solar system manufacturer
- Materials manufacturer
- Building enterprises
- R&D experts (building physics, HVAC+R systems, monitoring, lighting, materials)
- Engineering/Architectural consultants
- Building owners
Purpose
Identification of potential in shopping malls to supply grid services, reducing the impact on power demand through
- peak shaving of its demand curve or its adaptation to the conditions of generation of the utilities, based on the classification of the demand.
- use of generation coming from renewable energy sources in moments of mismatch between energy supply and demand, either directly or from storage.

BPIE, 2011
Capacities in Shopping centres to supply grid services

Energy use

- Shopping centers in Norway (avg. 270 kWh/m²)
- Shops in Norway (avg. 510 kWh/m²)

Haase and Woods, 2013
Capacities in Shopping centres to supply grid services

Energy use

Hypermarts (Food-driven)
- Ventilation
- Food refrigeration
- Heating and air-conditioning
- Store lightning

Nonfood retail formats
- Ventilation
- Others (elevators, demonstration units, etc.)
- Store lightning

Retail forum for sustainability, 2009
Capacities in Shopping centres to supply grid services
Baseline plans
Ground floor

First floor

Capacities in Shopping centres to supply grid services
Baseline zoning with grid

Capacities in Shopping centres to supply grid services
Baseline Constructions

<table>
<thead>
<tr>
<th>Building codes</th>
<th>TEK-1985</th>
<th>TEK-1987</th>
<th>TEK-1997</th>
<th>TEK-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Building codes' as built to std. 1985</td>
<td>Building codes year of completion</td>
<td>Redevelopment in 2000 (extension)</td>
<td>Current min. std. (for reference)</td>
</tr>
<tr>
<td>U-value ext. wall (W/ (m² K))</td>
<td>0,45*</td>
<td>0,30</td>
<td>0,22</td>
<td>0,18</td>
</tr>
<tr>
<td>U-value roof (W/ (m² K))</td>
<td>0,23</td>
<td>0,23</td>
<td>0,15</td>
<td>0,13</td>
</tr>
<tr>
<td>U-value floor (W/ (m² K))</td>
<td>0,30</td>
<td>0,30</td>
<td>0,15</td>
<td>0,15</td>
</tr>
<tr>
<td>U-value windows / doors (W/ (m² K))</td>
<td>*to be included in the facade.</td>
<td>2,40</td>
<td>1,6 - 2,0</td>
<td>1,2</td>
</tr>
<tr>
<td>U-value doors / ports (W/ (m² K))</td>
<td>2,0</td>
<td>2,0</td>
<td>2,0</td>
<td>1,2</td>
</tr>
<tr>
<td>Air tightness c (ach)</td>
<td></td>
<td></td>
<td>1,50</td>
<td></td>
</tr>
<tr>
<td>Heat recovery d (%)</td>
<td></td>
<td></td>
<td>80 %</td>
<td></td>
</tr>
<tr>
<td>Specific fan power (kW/ (m³ /s))</td>
<td></td>
<td></td>
<td>2,0/1,0</td>
<td></td>
</tr>
</tbody>
</table>
Measured data 2012
Avg. electricity profile

Increased electricity use
Measured data 2012
Avg. district heating profile

Mainly space heating
Domestic hot water
Validated model

Capacities in Shopping centres to supply grid services

![Bar chart showing energy demand in kWh for different categories: Shared El., Cooling, Distr. Heating, and Tenants estimate. Comparison between MÅLT_2013 and SIM_2013.](chart.png)
Capacities in Shopping centres to supply grid services

Results

Winter Week, 14. - 20. Jan | Shared electricity demand

- COP_AUH-HEATING
- COP-AHU-COOLING
- CMA_EQUIPMENT
- SVC_EQUIPMENT
- CMA_LIGHTING
- SVC_LIGHTING
- SHP_COP-SPACECOOLING
- SPP_TOT
- 268015123_Mains.Old(kWh)
Capacities in Shopping centres to supply grid services

Results

Spring Week, 8. - 14. April | Shared electricity demand
Capacities in Shopping centres to supply grid services

Results

Spring Week, 8. - 14. April | Reduced shared electricity demand
Capacities in Shopping centres to supply grid services

PV system

- Trondheim: 63° 25’ N, 10° 23’ E (south of Arctic circle)
- Average solar resource: 2.38 kWh m-2 d-1 onto a flat plate, 3.03 kWh m-2 d-1 onto a PV panel tilted 45° to the south.
- Here: 500kW (3200m2), 1MW, almost horizontal installation
Concepts/scenarios for decrease mismatch

Data requirements

<table>
<thead>
<tr>
<th>Indicator category</th>
<th>Load matching</th>
<th>Grid interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-site load and generation</td>
<td>I: Load match index(^1) Solar fraction(^2) Cover factor(^4) Self-consumption factor(^7) Loss of load probability(^4)</td>
<td>II: Grid interaction index(^1) Capacity factor(^4) Peak power indicators(^4) Grid citizenship tool(^8)</td>
</tr>
<tr>
<td>Additional data</td>
<td>III: Mismatch compensation factor(^5) Market matching(^3)</td>
<td>IV: Profile addition indicators(^5) Coincidence factor(^6)</td>
</tr>
</tbody>
</table>

Concepts/scenarios for decrease mismatch

- Load Cover Factor
 \[\gamma_{load} = \frac{\int_{t_1}^{T_a} \min[g(t) - S(t) - \zeta(t), l(t)] dt}{\int_{t_1}^{T_a} l(t) dt} \]

- Supply Cover Factor
 \[\gamma_{supply} = \frac{\int_{t_1}^{T_b} \min[g(t) - S(t) - \zeta(t), l(t)] dt}{\int_{t_1}^{T_b} g(t) dt} \]

- Grid interaction
 \[GI = \frac{g(t)}{l(t)} \]
Results

- 500kW PV system
Results

- 1 MW PV system
Capacities in Shopping centres to supply grid services

Results

Spring Week, 8. - 14. April | grid interaction reduced lighting loads

<table>
<thead>
<tr>
<th>Day</th>
<th>Grid Interaction Factor (f)</th>
<th>Demand and Generation [kWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/04/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/04/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09/04/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/04/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/04/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/04/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/04/2013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grid interaction factor [f] for demand and generation [kWh].
Capacities in Shopping centres to supply grid services

Results
Capacities in Shopping centres to supply grid services

Results

Monthly Statistics for GI

- max
- daily high
- mean
- daily low
- min
Capacities in Shopping centres to supply grid services

Results

Monthly Statistics for GI_red
Results – including tenants

- 1 MW PV system
Conclusions

- The results show that there is considerable potential for the use of generation coming from renewable energy sources.
- Peak shaving of power demand is possible but limited. It seems that PV production will exceed the energy needs only if they are strongly reduced.
- Grid interaction increases which gives options for energy storage (batteries).

- When tenants energy use is included, more work is needed in order to optimize the design of the building and the technical systems.
- Other RE sources should be considered (Wind power?).
Capacities in Shopping centres to supply grid services

THANK YOU!

CommONEnergy