

Design and comparison of two different optimized solar district heating typologies for Finnish Conditions

IBPSA-Nordic Aalto University, Finland 27th -28th September 2018

Hassam ur Rehman School of Engineering, Department of Mechanical Engineering

HVAC group

Background and challenges: Finland

- Building are largest consumers of energy in Finland
 - Two solar community concepts: Kerava (1980s) and Eko-Viikki (without seasonal storage).
- At high latitudes there are four major challenges:
 - > The weather is extremely cold during winters
 - The annual mismatch between irradiation and demand
 - Losses from the seasonal storage are high-ground condition
 - > The resulting energy costs are not yet competitive
- Seasonal storage is essential in Nordic conditions.
 - Borehole TES (BTES)
- We found that, solar district heating is influenced by
 - Climate of the location and controls

Hassa PhD S

Research questions and motivation

Design of the centralized and de-centralized solar district heating network in Nordic conditions

• Does De-centralized system configuration has any affect and influence on performance?

Influence of the design variables on the system performance

• Which important design variables in the system has an affect on the performance? And how much?

Motivation:

 Develop economically competitive, locally optimized solar community concepts (SCC) with around 90% Renewable Energy Fraction (REF) in Finnish conditions.

Methodology

- TRNSYS and TRNBuild Simulation
 - Solver (engine)
 - Component library, widely used in the simulation community
 - Solar district systems are designed and simulated on TRNSYS
- MOBO optimizer
 - Multi-objective optimization
 - Genetic algorithm
 - Optimization objectives (minimize the life cycle costs and purchased electricity)

Energy system design-Deceratia bzled

- Solar thermal charge
 - Central large warm tank

BTES charge & discharge via large central warm tank

- Individual house has small hot tank and heat pump
- Individual house heat pump takes energy from SPH return line and charge hot tank
- Provide SPH & DHW
- PV is used to provide electricity
 - Excess sold and shortfall imported via grid

Hassam ur Rehman PhD Student 5

Why De-centralized system?

Proposed/Desgined Case- Community with 100 buildings

- De-centralized solar thermal system
 Low temperature centralized operation (mainly space heating)
- Potentially less losses through network due to less lengths of domestic hot water piping
 - Hot water is produced inside the houses
- Lower cost

Reference Case- Single Building

- 50 kWh/m²/yr space heating and 40 kWh/m²/yr domestice hot water demands, with heat pump (3kW)
- No solar thermal or photovotialcs and seasonal storage (BTES)

Results-Centralized versus Decentralized system

Design variables	Types of variables	System type	Range/ Values (total for 100 houses)	Prices (€)
ST area (m²)	Continuous	Decentralized Centralized	50-6000 500-6000	1000—550 €/m ² 600—550 €/m ²
PV area (m²)	Continuous	Both systems	50-6000	450—200 €//m ²
Hot tank volume/house (m³)	Continuous	Decentralized	0.5-5/house	900—810 €/m³
		Centralized	1-5/house	850—810 €/m³
Warm tank volume (m³)	Continuous	Decentralized Centralized	300-500 150-500	900—810 €/m³
BTES aspect ratio			0.25-5	3€/m³(excavatio n for insulation and piping)
BTES borehole density	Continuous	Both systems	0.05-0.25	
BTES volume (m³)			10,000-70,000	+33.5€/m(drill)+ 88€/m ³ (1.5 m thick insulation)
Hot tank charge set points (°C)	Continuous	Decentralized	60-75 °C (for heat pump)	
		Centralized	68-83 °C (for collector)	
Warm tank charge set points (°C)	Continuous	Both systems	35-50 °C	
Building quality/configurati on	Discrete	Both systems	Type 1: space heating demand= 25kWh/m²/yr	15,628 €/building
			Type 2: space heating demand= 37kWh/m²/yr	13,260 €/building
			Type 3: space heating demand= 50kWh/m ² /vr	12,655 €/building

Centralized system

DHW in the centralized building

De-centralized system

• DHW heating in the buildings

Hassam ur Rehman PhD Student 7

Results- Cost breakdown

Configurations

Results- Design variable (Collectors and PV)

Hassam ur Rehman PhD Student 9

Results- Design variable (BTES)

Centralized

Decentralized

Aalto University School of Engineering

Hassam ur Rehman PhD Student 10

Results- Design variable (Hot tank set point)

Aalto University School of Engineering Hassam ur Rehman 11 PhD Student

Results- Distribution operating temperature

Centralized network has 40 % higher losses compared to decentralized network

 Decentralized system has 400 m length of heating network, where as centralized system has 4000 m length for 100 buildings

Hassam ur Rehman PhD Student 12

Results-Economic sensitivity

Parameter	Value	Trend	Reference
Electricity price	25 %	Increase	Peak oil news, "Trends In The Cost Of Energy," 2013. [Online]. Available: http://peakoil.com/alternative- energy/trends-in-the-cost-of-energy. [Accessed 2018].
Collector and photovoltaic 25 %		Decrease	J. Sanchez, "PV Market Trends," 2012. [Online]. Available: https://www.homepower.com/articles/solar- electricity/equipment-products/pv-market-trends. [Accessed 2018].
Centra	lized	Dece	entralized
1000 900 - 800 - 700 - 500 - 400 - 300 - 20 30 Purchased ele	Reference (Pareto Front)- Centralized system 25% increase in Electricity price (Pareto front) 25% decrease in PV price (Pareto front) 25% decrease in collector price (Pareto front) 40 50 60 ctricity (kWh/m²/yr)	1000 900 - 800 - 700 - 600 - 500 - 400 - 300 - 200 - 20 25 Purchased ele	 Reference (Pareto Front)- Decentralized system 25% increase in electricity price (Pareto front) 25% decrease in PV price (Pareto front) 25% decrease in collector price (Pareto front) 25% decrease in collector price (Pareto front) 40
Aalto University School of Engine	eering	Hassam ur Rehman PhD Student	13 Hassam ur Rehman, Janne Hirvonen, Kai Siren, "Performance comparison between optimized design of a centralized and semi-

optimized design of a centralized and semidecentralized community size solar district heating system," *Applied Energy*, vol. 229, pp. 1072-1094, 2018

Summary

- Community energy system is better both technically and economically compared to single building heat pump system.
- Community sized solar district heating systems for higher latitudes can achieve renewable energy fraction of 57-90%.
- Decentralization can reduce the life cycle cost by 35% and losses in the network by 40% compared to centralized system.
- Number of boreholes and volume of storage increased when the performance improved, on the other hand the depth of the boreholes decreased.
- The set points are sensitive to the system typology and the hydraulic connections.
- The Pareto fronts are more sensitive to the electricity price in worst performance cases, and more sensitive to the component prices in best performing cases.

Thank you

Hassam ur Rehman PhD Candidate Department of Mechanical Engineering Aalto University, Finland

Reference

Hassam ur Rehman, Janne Hirvonen, Kai Siren, "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," *Applied Energy*, vol. 229, pp. 1072-1094, 2018

Aalto University School of Engineering

Hassam ur Rehman PhD Student