Influence of Energy-efficient Renovation on Energy Use & Thermal Comfort in Swedish Single-family Residential Buildings from the Million Program

Shimantika Bhattacharjee, Dr. Åke Blomsterberg, Tomas Ekström Energy efficient and Environmental Building design Lund University

BACKGROUND

'20 20 20' target

BACKGROUND

SINGLE FAMILY RESIDENCES FROM THE MILLION PROGRAM

Cold during winter

THERMAL

COMFORT

Warm during summer

What is the influence of energy-efficient renovation on thermal comfort in Swedish single-family houses built during the Million program?

- What are the factors contributing to energy use and what are the possible renovation measures?
- Which renovation measures have a major impact on the thermal comfort of the occupants?
- What are the changes in the thermal comfort of the occupants before and after adopting the proposed renovations aimed through efficient energy use?

CASE STUDY BUILDING 1

• Location: Outside Storage Boiler Living room room Gothenburg Kitchen Laundry Built period: 1968 Floor area : ulletBed room Toilet 235m² Garage Family room / 'Gillestuga' Bed room Bed room **PLAN**

CASE STUDY BUILDING 2

Location:NearStockholm

- Built period: 1975
- Floor area :
 150 m²

ACTIVITY DIAGRAM

SIMULATION PARAMETER

THERMAL COMFORT

PARAMETRIC STUDY ANALYSIS

• IDA ICE

OPERATIVE TEMPERATURE - BUILDING 1

Before renovation

- MAX. OPERATIVE TEMPERATURE 28 °C
- MIN. OPERATIVE TEMPERATURE 15.5 °C

After passivehouse renovation

- MAX. OPERATIVE TEMPERATURE 27 °C
- MIN. OPERATIVE TEMPERATURE 21 °C

OVERHEATING HOURS AFTER RENOVATION - BUILDING 1

Glass type		Shading device		U-value without shading (W/m²⋅K)	t U- value with shading (W/m ² ·K)
1.3mm low-emissive glass		Interior ro	ller blind	1.53	1.27
² Triple-glazed with low-e film		Exterior	screen	1.12	1.08
³ Triple pane emissive gl	low ass	Exterior v with sch	enetian edules	1.12	1.01
Overheating hours> (25°) 800 700 600 500 400 300 200 100 0 Living room	PC)	edroom 1	Overheati 300 250 200 150 100 50 0 Li	ng hours (>27°C)	bom 3 Bedroom1 er bind Exterior screen

OVERHEATING HOURS AFTER RENOVATION - BUILDING 2

Glass type	Shading device	U-value without shading (W/m²·K)	U value with shading (W/m²·K)
Double high solar gain low emissive	External blind	1,75	1,5
Triple pane clear glass	Interior roller blinds	1,86	1,57
Triple pane suspended low-e-film	External venetian blind with schedules	1,12	1,016
Venetian blind	-	0,91	0,83
between two panes			

OPERATIVE TEMPERATURE AFTER RENOVATION

<u>Case study building 2</u> Max op.temp January 21 Livingroom 22,3 °C Familyroom 21,9 °C Bedroom 5 21,8 °C

<u>Case study building 1</u> Max op.temp January 21

- Livingroom 23,3°C
- Bedroom 1 22,4°C
- Bedroom3 23°C
- Kitchen 23,2°C

PPD ANALYSIS IN THE EXISTING CASE STUDY BUILDING 2

Thermal climate	Bronze	Silver	Gold
PPD (%)	≤ 20%	≤ 15%	≤ 10 %

- Higher PPD

 (Predicted
 percenatage of
 dissatisfied
 levels
 during winter > 20
- Average PPD >10

PPD ANALYSIS IN THE RENOVATED CASE STUDY BUILDINGS - SUMMER

Case study building 2

Max PPD

- Family room 10,5%
- Bedroom1 9,7%
- Bedroom 4 9,1%

Case study building 1

- Livingroom 10,2%
- Kitchen & family room 7,5 %

PPD ANALYSIS DURING WINTER

Scenerio after renovation

Building 1

• 5-9.5%

Building 2

• 7.5 – 9.7%

- Energy use according to Swedish passivehouse standard after renovation
 - Shading implementation & orientation
 - Satisfactory indoor thermal environment after renovation
- Comparative analysis between simulated and scientific equations for comfort temperature
 - Attained **PPD** level below 10% after renovation

Thank you all for your attention

