

Simplified Space-Heating Distribution using Radiators in Super-Insulated Apartment Buildings

L. Georges*, K. Wen^{*,c}, M.J. Alonso^b, M. Berge*, J. Thomsen^b and R. Wang^c

*Energy and Process Engineering Department (EPT), NTNU ^bInstitute of Refrigeration and Cryogenics, Shanghai Jiao Tong University ^cSINTEF Building and Infrastructure BuildSim-Nordic 2016, September 2016, Trondheim, Norway

Husbanker

Background

- In Norway, concepts of energy-efficient buildings are based on a superinsulated building envelopes
 - New building regulation (TEK)
 - Norwegian Passive House (PH) standard (NS3700)
 - Zero Emission Buildings (ZEB), Nearly Zero Energy Building (NZEB)
- In super-insulated buildings, it is possible to simplify the space-heating distribution
 - High-performance glazing does not require a heat emitter to prevent draft
 - No uncomfortable mean radiant temperature (T_{mrt}) from external walls
 - Simplification using air-heating at the basis of the German PH standard definition

Research questions and methods

- There is a lack of theoretical background and experience to design simplified heat distribution in Norwegian PH
 - Previous investigations have focused on air-heating and stove heating
 - Present contribution focuses on low-temperature radiators and apartment buildings
- Investigate the trade-off between thermal comfort and energy efficiency
 - Temperature in rooms where the a single radiator is placed (typically living room)?
 - Temperature in rooms without radiator (typically bedrooms)?
 - Do the users operate the building consistently with their desired indoor thermal environment?
 - Energy efficiency, for example with window opening?
- Methods
 - 1. Qualitative user interviews
 - 2. Field measurements (about 2 weeks)
 - 3. Detailed dynamic simulations (IDA-ICE)

Test case

Two identical apartments from Miljøbyen Granåsen project in Trondheim

The Research Centre on Zero Emission Buildings

Test case

- Space-heating distribution
 - One radiator in the corridor _
 - Electric air pre-heating battery
 - Floor heating in bathroom
- Temperature measurements (red dots)
 - iButton DS1922L-F5 (± 0.5°C)
 - Stratification in living room, kitchen and corridor
 - At least, one sensor in each room
 - Sensors in AHU and air terminal devices (ATDs)
 - Outdoor air temperature
- Set-point temperatures registered in a diary
- Opening measurements
 - Binary signal (open/closed)
 - Windows and internal doors

User satisfaction

- User questionnaire in MiljøGranåsen (from Berge et al. 2016)
 - 62 houses (but row and detached houses), same heat distribution strategy
 - Most people satisfied with thermal comfort in the living room
 - 50% people dissatisfied with too high temperatures in bedrooms
 - Many occupants nonetheless do not operate supply air pre-heating consistently
 - 50% open bedroom windows during a few hours during winter (essentially for temperature control)
- User 1 interview (single person)
 - Requires 24°C in living room, 16-18°C in bedrooms
 - Too cold in living room (22°C) (due to potential leakage in windows)
 - Too warm bedrooms (cannot open windows during night due to noise)
- User 2 interview (single person)
 - Requires 22°C in living room, 12-15°C in bedrooms
 - Too cold in living room (due to due to potential leakage in windows)
 - Satisfied with the temperature in bedrooms but windows always open

Measurement: heat distribution within room (1)

- Temperature stratification and distribution in corridor, living room, kitchen
- Flat 2
 - Uniform temperature between corridor, living room and kitchen
 - Acceptable stratification (< 3°C)

The Research Centre on Zero Emission Buildings

Measurement: heat distribution within room (b)

- Temperature stratification and distribution in corridor, living room, kitchen
- Flat 1
 - Uniform temperature between living room and kitchen
 - BUT significant ΔT between corridor and living room (leakage?)

The Research Centre on Zero Emission Buildings

Measurement: bedroom (1)

- Flat 1
 - Bedroom at about 20°C while 16°C desired, windows almost never open, door closed
 - Typical ~2°C temperature difference with the heated corridor
 - Inconsistent pre-heating of air after heat recovery unit (Tset,AH ~20C°)

The Research Centre on Zero Emission Buildings

Measurement: bedroom (2)

- Flat 2
 - Bedroom at about 16°C as desired, windows always open, door mostly closed
 - Window opening creates ~4°C temperature difference with the heated corridor
 - Consistent no pre-heating of air after heat recovery unit (Tset,AH = Tset,HR)

The Research Centre on Zero Emission Buildings

Building simulation using IDA-ICE

- Objective: what can we expect using BPS?
 - Cannot address the question of temperature distribution between corridor and living room (requires a CFD)
 - Investigate the optimal control to get low temperature in bedrooms with a minimal increase of the space-heating needs
- Model calibrated with measurements
 - Opening of door and windows from measurement, set-points from diary
 - Internal gains defined as a function of the data collected during interviews
 - Total solar irradiation on horizontal plane from weather station (3 km away)

Alternative control strategies

• Play with different set-points

- 1. For the temperature in corridor (Tset,SH)
- 2. For the heat recovery efficiency (Tset, HR)
- 3. For the air-heating battery after AHU (Tset, AH)
- 4. For the window and internal door opening

Control	Tset,HR	Tset,AH	Tset,SH	Window	Door
0, baseline	No	20°C	Exp. Data (24°C)	Closed	Closed
1	No	16°C	Exp. Data (24°C)	Closed	Closed
2	16°C	16°C	Exp. Data (24°C)	Closed	Closed
2b	16°C	16°C	+Night-setback (16°C)	Closed	Closed
2c	16°C	16°C	Constant 20°C	Closed	Closed
3	14°C	14°C	Exp. Data (24°C)	Closed	Closed
4	16°C	16°C	Exp. Data (24°C)	Open if T>16°C and nighttime	Closed
4b	16°C	16°C	Exp. Data (24°C)	Open if T>16°C and nighttime	Open in daytime (window closed)
5	16°C	16°C	Exp. Data (24°C)	Open	Closed
	Zero Emission Buil	aings	Science and Technology		ENVIRONMENT- FRIENDLY ENERGY RESEARCH

Results: real boundary conditions

- Reduced Tset, AH does not really helps (case 1)
- Reduced HR efficiency with Tset, HR 16°C reduces of ~2°C (case 2)
 - Night setback in living room does not help (case 2b)
 - Reduced constant living room temperature reduces to ~3°C (case 2c)
- Reduced HR efficiency with Tset, HR 14°C reduces of ~3°C (case3, but draft)
- Opening of window manages to control temperature at ~16°C (case 4)
- If bedroom reheated during daytime, not enough time to reach 16°C (case 4b)

Results: standard boundary conditions (NS3700)

- Baseline and case 1 have the typical 15 kWh/m².year with Tset,SH = 21°C
- Increasing to Tset,SH = 24°C gives 22 kWh/m².year
- Each control alternative leads to an increase of the space-heating needs
 - Reducing the HR efficiency with Tset, HR = 16°C gives +25% (case 2)
 - Reducing the HR efficiency with Tset, HR = 14°C gives +40% (case 3)
 - Opening the window if the bedroom temperature > 16°C gives +40% (case 4)
 - Opening during the night and re-heating during day gives +80% (case 4b)

Results: standard boundary conditions (NS3700)

Temperature duration curve (during occupancy)

The Research Centre on Zero Emission Buildings

Conclusions

- The control cannot solve the problem of "too warm" bedrooms
 - 1. Cannot decrease the bedroom temperature to 16°C without introducing a significant increase of the space-heating needs and draft
 - 2. The set-point temperature for the air-heating battery (Tset,AH) is not always consistent but has a small impact compared to consistent operation (in terms of thermal comfort and energy needs)
 - 3. A cyclic heating of the bedroom during daytime and cooling during nighttime **critical** for both thermal comfort (slow dynamics) and energy needs (significant increase)
 - 4. The next step should investigate on a change on the building and the ventilation system
 - Increase the thermal insulation of internal walls
 - Move the radiator in the living room and create a **buffer zone** with the corridor
 - Introduce a two-zones ventilation system (publication of Berge et al. 2016)
- The distribution in the room were the heat emitter is placed
 - Moving radiator to the living room would be beneficial (does not need central position)
 - Investigations cannot be supported by standard BPS tools (needs CFD)

