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Space-heating in Norway 

• Wood stoves:  
• Cover 20% of the space-heating needs of residential buildings stock 
• Half of the bioenergy use (decision to double bioenergy use in 2020) 
• The highest installed power after hydroelectricity 
• Wood stoves have a role play in the future  

 

• Building concepts and regulation: 
• Currently the TEK10 building regulation is into force 
• The Norwegian Passive House (NS3700) standard seen as a basis for 

the next TEK15 building regulation 
• In 2020, all new building should be nearly-zero energy (nZEB) 
• R&D on zero emission building (ZEB) within the Norwegian ZEB FME 

center 
• We can conclude that future buildings envelopes will be highly-

insulated 
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Integration of wood stoves in passive houses 

• Challenge on Indoor Air Quality (IAQ): 
• Airtight building envelopes equipped with balanced mechanical ventilation 
• The stove envelope should be airtight (need a standard test method) 
• Independent air circuits for combustion air and flue gas removal 
• Lack of measurements on IAQ using wood stoves in highly insulated 

buildings (work of Ricardo Luis Carvalho from DBRI) 
 

• Challenge on Indoor Thermal Environment: 
• Nominal Power wood stoves (Pn) is oversized for passive houses 
• 6-8 kW for pellet stoves and 4-8 kW for wood-log stoves 
• 160 m² detached passive house has ~3kW space-heating power for Oslo 

climate in design weather conditions (i.e. cold wave) 
• The wood stoves should operate on long combustion cycles (> 45 min) to 

get good efficiency and limited emission of pollutants 
• Risk of overheating in the room where the stove is placed 
• But potential to simplify space-heating distribution using wood stoves 
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Physical phenomena: many parameters 

• Building physical parameters: 
• Building geometry and geographic location (e.g. climate) 
• Importance of internal and solar gains in passive houses 
• Thermal insulation of external walls as well as partition walls 
• Thermal mass as wood stoves are oversized (no steady-state regime) 
• Balanced mechanical ventilation with heat recovery 
• Buoyancy driven flow through open doors inside the building (bidirectional 

flow with airflow rates well higher than hygienic ventilation)  

• Stove physical parameters: 
• Nominal combustion power (Pn) and efficiency  
• The combustion cycle length for pellet stoves  
• The amount of wood logs and the batch combustion dynamics 
• Power modulation capabilities and control 
• Thermal properties of the stove envelope: 

• Flatten the heat release profile to the room (stove thermal mass) 
• Ratio between power emitted by radiation and convection 

 

• Need for sensitivity analyses at acceptable computational cost 
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Physical phenomena: many timescales 

• A large spectrum of timescales (τ) are involved, a challenge for 
the time integration using numerical methods: 
• Natural convection with unsteady flow (τ < 1min) 
• Stove combustion control such as power modulation (τ < 1min) 
• Length of one batch combustion cycle (τ > 0.75h to 3-4h) 
• Time constant of highly-insulated building envelopes (τ ~ days) 
• Boundary conditions of the building changing throughout the year: 

• Outdoor temperature 
• Solar irradiation 
• Internal gains and user behavior 

 
 

• Need to perform simulation with small time steps 
• Ideally, all-year simulation at acceptable computational cost 
• Most critical operating conditions during the heating season but not well-

established for Norwegian passive houses 
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Physical phenomena: thermal comfort 

• Thermal comfort can be complex to assess: for instance 
• Local air temperature, vertical temperature stratification 
• Mean radiant temperature (Tmrt) 
• Local air velocity 
• Radiant asymmetry: need local thermal comfort assessment near the 

stove (on different body segments) 
• Direct radiation from the combustion chamber 

 

• Recent study showed  
• From Ghali et al., Building & Environment, 2008 
• Far from the stove, a global thermal comfort assessment should be 

enough as regards the radiation asymmetry 
 

• Propose to evaluate the thermal comfort based on ISO 7730 far 
from the stove and neglect direct radiation from combustion 
chamber (using the operative temperature, Top) 
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Modeling (1): Thermal Dynamic Simulations 

• Example: TRNSYS, IDA-ICE, ESP-r or EnergyPlus 
• Advantages: 

• Develop to solve multi-physical and heterogeneous problems 
• Acceptable computational time for all-year simulations and thus possibility 

of sensitivity analyses 
• Building modeled like a thermal network, usual approach in BPS 

 

• Limitations: 
• Room air modeled using a single node (well-stirred tank approximation) 
• Vertical division possible if the airflow from convection between vertical 

layers known  
• Flow within a zone is not known 
• Flow between zones computed using a ventilation network approach 
• Bidirectional flow through door using a large opening approximation 

(introducing a discharge coefficient, Cd) 
• The IEA Annex 20, Airflow in Buildings, showed that the vertical stratification is 

important to get the right exchange of heat between rooms  
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Modeling (2): Computational Fluid Dynamics (CFD) 

• Advantages: 
• Flow within a room can be known/approximated 
• Temperature stratification can be known/approximated 
• Bidirectional through open doors better computed than TDS 
• Detailed radiation between surfaces can be computed 

 
• Main drawbacks: 

• Consistency of the boundary conditions around CFD domain 
• High computational cost  

• Need at least one stove cycle with an unsteady flow simulation 
 
 

• Ideally, should couple CFD with TDS (next step) 
• Consistent boundary conditions for the CFD domain 
• Consistent convection coefficients for the TDS 
• Some tools exist but not always full satisfactory 



A world where buildings do not contribute with 

greenhouse gas emissions 

Modeling (3): Computational Fluid Dynamics (CFD) 

• Example CFD: 
• Steady-state simulation boundary conditions (stove not oversized) 
• Boundary conditions pre-computed using TDS (decoupled) 
• Unsteady flow due to high Rayleigh number 
• URANS using the k-ε RNG model on a 1.0 106 nodes tetrahedral mesh 
• Georges et al., BSO 2012 conference, Loughborough  

Snapshot of the unsteady temperature field 
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Modeling (4): Summary 

• Advantages and limitations of the three modeling approaches 

Method Δt imposed by Tmin Tmax CPU time 
Convection 

doors 
Consistent 

BCS 
Top 

Stratifi-
cation 

Radiation 
asymmetry 

Air velocity 

TDS Control/Flow 1-cycle 1-year Low-Medium Simple Yes Yes No Yes No 

CFD Flow 1-cycle Few cycles High Accurate No Yes Yes Yes Yes 

TDS+CFD Flow 1-cycle Few cycles High Accurate Yes Yes Yes Yes Yes 

Tmin = minimal simulation time; Tmax = maximal simulation time 
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• Insight into all-year thermal comfort at acceptable CPU cost 
• Implemented in TRNSYS/TRNFLOW 

• Type56b for the building model 
 
 
 
 
 
 

• PID control of power modulation for a pellet stove, manual for log stoves 
• Batch combustion model for wood logs  
• 1-D heat transfer in the stove envelope 
• Correlation for convection from the stove surface to the room 
• Detailed view factors evaluation from the stove to room surfaces and user 
• Stove emitted power as internal gain into building model (convection to air 

node and radiation to walls) 
 

Simplified wood stove model (1) 
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• Batch combustion model for wood logs  
• Developed by Øyvind Skreiberg (SINTEF Energy Research) 
• Semi-empirical model with different phases: 

• Drying 
• Pyrolysis/devolatization  
• Char oxidation/gasification 

• Example of the 8 kW of Pn 
• No modulation (dashed) 
• 50% modulation (solid) 
• 20 kWh batch load (grey) 
• 10 kWh batch load (black) 

 
 
 
 

 

Simplified wood stove model (2) 

8kW 

4kW 

Ppeak > Pn 



A world where buildings do not contribute with 

greenhouse gas emissions 

• Batch combustion model for wood logs  
• Need to account for the real combustion profile and not average power 

• 8kW log stove and 1.25h cycle (black) 
• 8kW constant and 1.25h cycle (grey dashed-dot) 

 

 
 
 

 

Simplified wood stove model (3) 

Results from dynamic simulations 
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• Multi-layer 1D heat transfer in walls 
• Developed by Øyvind Skreiberg (SINTEF Energy Research) 
• Not yet implemented in TRNSYS 

 
 

 
 
 

 

Simplified wood stove model (4) 
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Input data for wall N N N  N

Layer used (Y/N) --> Default Y Y Default Y Default Y

Layer nr. --> 1 2 3 4 - Air 5 6 - Air 7

Conductivity 1,3 0,3 60 72 72 W/mK

Thickness 0,01 0,01 0,01 0,001 0,001 m

Density 1980 950 7190 7870 7870 kg/m3

Cp 732 700 460 448 448 J/kgK

Emissivity in 0,9 0,9 -

Emissivity out 0,9 0,9 0,9 0,9 0,9 -

Air inlet velocity 0,4 0,3 m/s

Air slit width 0,02 0,02 m

Wall height 0,4 m

Wall width 2 m Example :

Emissivity - ambient 0,9 - 1: Stone/brick wall 6: Air slit

Wall area 0,800 m2 2: Insulation 7: Metal plate

Wall weight incl. metal plates 93,55 kg 3: Cast-iron 

Stefan Boltzmanns const. 5,67E-08 W/m2K4 4: Air slit

Time step 60 s 5: Metal plate

Heat flux

Heat transfer example (if all layers used):
* Conduction through stone/brick wall (1), 

insulation (2) and cast iron (3)

* Convection from cast-iron (3) to flowing air (4)
* Radiation from cast-iron (3) to metal plate 1 (5)
* Convection from flowing air (4) to metal plate 1 (5)

* Convection from metal plate 1 (5) to flowing air (6)
* Radiation from metal plate 1 (5) to metal plate 2 (7)
* Convection from flowing air (6) to metal plate 2 (7)

* Convection from metal plate 2 (7) to surroundings
* Radiation from metal plate 2 (7) to surroundings

5

4

3 2 17

6
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• Validation of the model for stove and building interaction 
• Electric movable stove: 

• Surface temperature profiles imposed  
• Measure the resulting thermal environment in building  

 
 
 
 

 

Simplified wood stove model (5) 
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• Advantages: 
• Does not need to be connected to a stack/chimney 
• Can be implemented temporarily and applied different heat release profiles 
• Electricity enables to control the heat release profile accurately 
• No risk for the IAQ 

 
 
 

 

Movable electric stove (1) 

15.5 kWe and low thermal mass for quick reaction time Good temperature distribution on stove surfaces 
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• Principle: 
 
 
 

 

Movable electric stove (2) 
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• Measurements in passive house 
• Miljø Granåsen project in Trondheim 
• Building of 142 m² heated area 
• Measurements Mars-April 2013 
• Lightweight wooden structure 
• Unoccupied without furniture 

 
 
 

 

Movable electric stove (3) 

Basement Ground floor First floor 
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• Measurements in passive house 
• Air temperature distribution in room  
• Wall temperature distribution in room 
• Flow through open door between ground and first floor 

 
 
 

 

Movable electric stove (4) 

Type Number Location Precision Measure 

PT-100 5 Ground floor  ±0.1°C Ts, stratification 

5 Staircase  ±0.1°C Ts, stratification 

1 Living-room ±0.1°C Ts, 0.8 m height 

1 Kitchen ±0.1°C Ts, 0.8 m height 

1 Kitchen ±0.1°C Top, 0.8 m height 

7 Walls ±1°C Twall 

Radiant temperature 

transducer INNOVA 

MM0036 

1 Living-room and 

kitchen 

±0.5°C Tmrt, 0.8 m height 

Thermocouples 

Type T  

10 Doorway or 

living-room 

±1%  

±0.5°C 

Ts, profile or 

stratification 

Anemometer 

TSI 8475 

10 Doorway  ±3%  

±0.005 m/s 

Air velocity profile 

Temperature logger 

iButton Maxim  

Integrated DS1922L 

11 Each room ±0.06°C Ts, one by room  

1 Outdoor ±0.06°C Ts, sheltered 

3 Air Handling Unit ±0.06°C Ts fresh air 
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• Test cases for measurements in passive house 
• Wood pellet stove (4 test cases) 

 
 
 
 
 

• Wood log stove (8 test cases) 
 
 

 

Movable electric stove (5) 

Case Pn Modulation Ith Cycle length 

N° [kW] [% of Pn] [kJ/K] [min] 

1p 6 100 50 90 

2p 6 100 150 90 

3p 8 30 50 90 

4p 8 100 150 90 

Case Pn Modulation Ith Batch load 

N° [kW] [% of Pn] [kJ/K] [kWh] 

1w 4 50 50 5 

2w 4 100 50 5 

3w 4 50 50 10 

4w 4 100 50 10 

5w 8 50 50 10 

6w 8 100 50 10 

7w 8 50 150 10 

8w 8 100 150 10 
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• Conclusion for temperature distribution in room 
• Significant vertical temperature gradient 
• Small horizontal temperature gradient (except with sun) 

• Vertical stratification 
• Influence the thermal comfort 
• Enhance the heat transfer with the first floor (through ceiling) 
 

Movable electric stove (6) 

Case Sun Text ΔTop,max ΔTs,hor,max ΔTs,vert,z1,max ΔTs,vert,z2,max 

Living room  Outside Kitchen Ground floor Ground floor Staircase 

N° [Yes-No] [°C] [°C] [°C] [°C] [°C] 

1p No -1 4.5 0.2 11 4.1 

2p No +8 3.3 0.5 8.1 2.0 

4p No +5 5.5 1.4 11 5.3 

2w No +6 4.2 1.5 8.4 6.5 

4w No +5 6.4 0.6 3.1 5.0 

5w No +5 4.7 0.3 9.3 5.1 

7w No +5 4.0 0.4 7.6 4.2 

8w No +7 5.3 0.8 8.9 3.6 

3p Yes +4 3.9 2.8 5.5 3.6 

1w Yes +4 3.8 3.5 4.3 3.7 

3w Yes +4 6.8 4.6 6.7 7.1 

6w Yes +4 6.0 4.5 13 7.8 
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• Conclusion for the bidirectional airflow through open door 
• Large opening approximation gives good approximation for the mass flow 
• The convective heat exchange is underestimated if the vertical temperature 

stratification is not accounted for 
 

 

Movable electric stove (7) 

Case Cdv Cdm Cdms Cdes Cdesm 

N° [-] [-] [-] [-] [-] 

1p 0.36 0.35 0.32 0.58 0.40 

3p 0.40 0.38 0.36 0.61 0.35 

1w 0.39 0.37 0.35 0.54 0.33 

2w 0.39 0.38 0.33 0.62 0.41 

3w 0.41 0.40 0.39 0.62 0.43 

5w 0.38 0.36 0.35 0.53 0.33 
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• A simplified wood stove model for detailed dynamic simulations 
was needed 
• Should provide insight into the all-year thermal comfort at an acceptable 

computational cost 
• An experimental setup has been created to validate the modeling of the stove 

surface temperature and building interaction (i.e. movable electric stove) 

 
• The main modeling hypotheses seem realistic except for the vertical 

stratification in the room where the stove is placed 
• Influence the thermal comfort  
• Enhance the conductive heat transfer with the first floor 
• Enhance the convective heat exchange through the door (sensitivity analysis 

should be done with Cd taken as [0.4;0.8]) 
 

• The  hypothesis of 1-D heat transfer in the stove envelope remains 
to be validated  

Conclusions 


