

Simulation of the Indoor Thermal Environment of Passive Houses heated using Wood Stoves

Laurent Georges¹, Øyvind Skreiberg²

¹Energy and Process Engineering Department, NTNU ²SINTEF Energy Research

> BuildSim-Nordic 2014, Espoo, Finland 26th of September 2014

The Research Centre on Zero Emission Buildings

Stable heat release and distribution from batch combustion of wood

E ENV PRE

Space-heating in Norway

- Wood stoves:
 - Cover 20% of the space-heating needs of residential buildings stock
 - Half of the bioenergy use (decision to double bioenergy use in 2020)
 - The highest installed power after hydroelectricity
 - Wood stoves have a role play in the future
- Building concepts and regulation:
 - Currently the TEK10 building regulation is into force
 - The Norwegian Passive House (NS3700) standard seen as a basis for the next TEK15 building regulation
 - In 2020, all new building should be *nearly-zero energy* (nZEB)
 - R&D on *zero emission building* (ZEB) within the Norwegian ZEB FME center
 - We can conclude that future buildings envelopes will be highlyinsulated

Integration of wood stoves in passive houses

- Challenge on Indoor Air Quality (IAQ):
 - Airtight building envelopes equipped with balanced mechanical ventilation
 - The stove envelope should be airtight (need a standard test method)
 - Independent air circuits for combustion air and flue gas removal
 - Lack of measurements on IAQ using wood stoves in highly insulated buildings (work of Ricardo Luis Carvalho from DBRI)
- Challenge on Indoor Thermal Environment:
 - Nominal Power wood stoves (Pn) is oversized for passive houses
 - 6-8 kW for pellet stoves and 4-8 kW for wood-log stoves
 - 160 m² detached passive house has ~3kW space-heating power for Oslo climate in design weather conditions (i.e. cold wave)
 - The wood stoves should operate on long combustion cycles (> 45 min) to get good efficiency and limited emission of pollutants
 - Risk of overheating in the room where the stove is placed
 - But potential to simplify space-heating distribution using wood stoves

Physical phenomena: many parameters

Building physical parameters:

- Building geometry and geographic location (e.g. climate)
- Importance of internal and solar gains in passive houses
- Thermal insulation of external walls as well as partition walls
- Thermal mass as wood stoves are oversized (no steady-state regime)
- Balanced mechanical ventilation with heat recovery
- Buoyancy driven flow through open doors inside the building (bidirectional flow with airflow rates well higher than hygienic ventilation)

• Stove physical parameters:

- Nominal combustion power (Pn) and efficiency
- The combustion cycle length for pellet stoves
- The amount of wood logs and the batch combustion dynamics
- Power modulation capabilities and control
- Thermal properties of the stove envelope:
 - Flatten the heat release profile to the room (stove thermal mass)
 - Ratio between power emitted by radiation and convection
- Need for sensitivity analyses at acceptable computational cost

Physical phenomena: many timescales

- A large spectrum of timescales (τ) are involved, a challenge for the time integration using numerical methods:
 - Natural convection with unsteady flow ($\tau < 1$ min)
 - Stove combustion control such as power modulation ($\tau < 1$ min)
 - Length of one batch combustion cycle ($\tau > 0.75h$ to 3-4h)
 - Time constant of highly-insulated building envelopes ($\tau \sim days$)
 - Boundary conditions of the building changing throughout the year:
 - Outdoor temperature
 - Solar irradiation
 - Internal gains and user behavior
- Need to perform simulation with small time steps
 - Ideally, all-year simulation at acceptable computational cost
 - Most critical operating conditions during the heating season but not wellestablished for Norwegian passive houses

Physical phenomena: thermal comfort

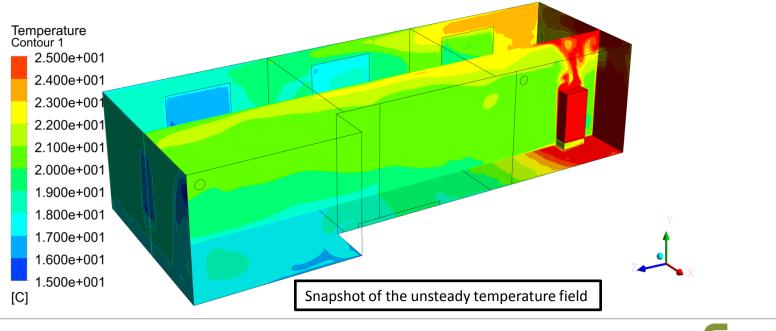
- Thermal comfort can be complex to assess: for instance
 - Local air temperature, vertical temperature stratification
 - Mean radiant temperature (Tmrt)
 - Local air velocity
 - Radiant asymmetry: need local thermal comfort assessment near the stove (on different body segments)
 - Direct radiation from the combustion chamber
- Recent study showed
 - From Ghali et al., Building & Environment, 2008
 - Far from the stove, a global thermal comfort assessment should be enough as regards the radiation asymmetry
- Propose to evaluate the thermal comfort based on ISO 7730 far from the stove and neglect direct radiation from combustion chamber (using the operative temperature, Top)

Modeling (1): Thermal Dynamic Simulations

- Example: TRNSYS, IDA-ICE, ESP-r or EnergyPlus
- Advantages:
 - Develop to solve multi-physical and heterogeneous problems
 - Acceptable computational time for all-year simulations and thus possibility of sensitivity analyses
 - Building modeled like a thermal network, usual approach in BPS
- Limitations:
 - Room air modeled using a single node (well-stirred tank approximation)
 - Vertical division possible if the airflow from convection between vertical layers known
 - Flow within a zone is not known
 - Flow between zones computed using a *ventilation network approach*
 - Bidirectional flow through door using a *large opening approximation* (introducing a discharge coefficient, Cd)
 - The IEA Annex 20, *Airflow in Buildings*, showed that the vertical stratification is important to get the right exchange of heat between rooms

Modeling (2): Computational Fluid Dynamics (CFD)

- Advantages:
 - Flow within a room can be known/approximated
 - Temperature stratification can be known/approximated
 - Bidirectional through open doors better computed than TDS
 - Detailed radiation between surfaces can be computed
- Main drawbacks:
 - Consistency of the boundary conditions around CFD domain
 - High computational cost
 - Need at least one stove cycle with an unsteady flow simulation
- Ideally, should couple CFD with TDS (next step)
 - Consistent boundary conditions for the CFD domain
 - Consistent convection coefficients for the TDS
 - Some tools exist but not always full satisfactory



Modeling (3): Computational Fluid Dynamics (CFD)

- Example CFD:
 - Steady-state simulation boundary conditions (stove not oversized)
 - Boundary conditions pre-computed using TDS (decoupled)
 - Unsteady flow due to high Rayleigh number
 - URANS using the k-ε RNG model on a 1.0 10⁶ nodes tetrahedral mesh
 - Georges et al., BSO 2012 conference, Loughborough

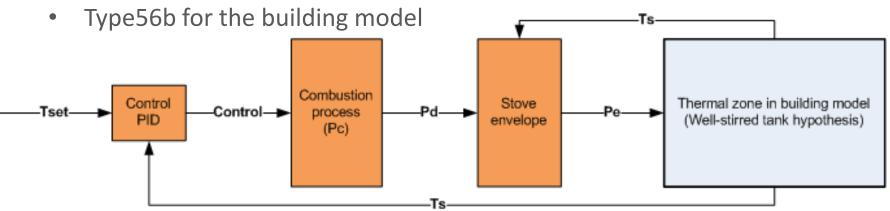
The Research Centre on Zero Emission Buildings

Modeling (4): Summary

• Advantages and limitations of the three modeling approaches

Method	∆t imposed by	Tmin	Tmax	CPU time	Convection doors	Consistent BCS	Тор	Stratifi- cation	Radiation asymmetry	Air velocity
TDS	Control/Flow	1-cycle	1-year	Low-Medium	Simple	Yes	Yes	No	Yes	No
CFD	Flow	1-cycle	Few cycles	High	Accurate	No	Yes	Yes	Yes	Yes
TDS+CFD	Flow	1-cycle	Few cycles	High	Accurate	Yes	Yes	Yes	Yes	Yes

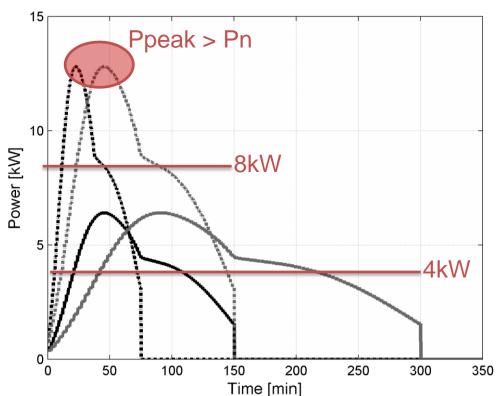
Tmin = minimal simulation time; Tmax = maximal simulation time



Simplified wood stove model (1)

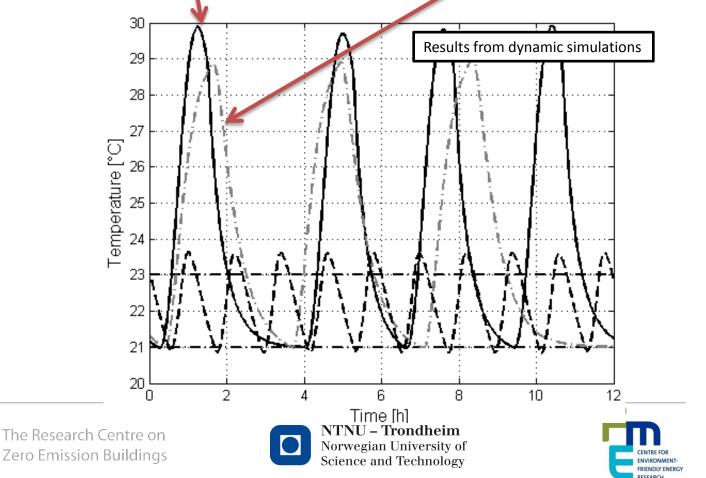
- Insight into all-year thermal comfort at acceptable CPU cost
- Implemented in TRNSYS/TRNFLOW

- PID control of power modulation for a pellet stove, manual for log stoves
- Batch combustion model for wood logs
- 1-D heat transfer in the stove envelope
- Correlation for convection from the stove surface to the room
- Detailed view factors evaluation from the stove to room surfaces and user
- Stove emitted power as internal gain into building model (convection to air node and radiation to walls)

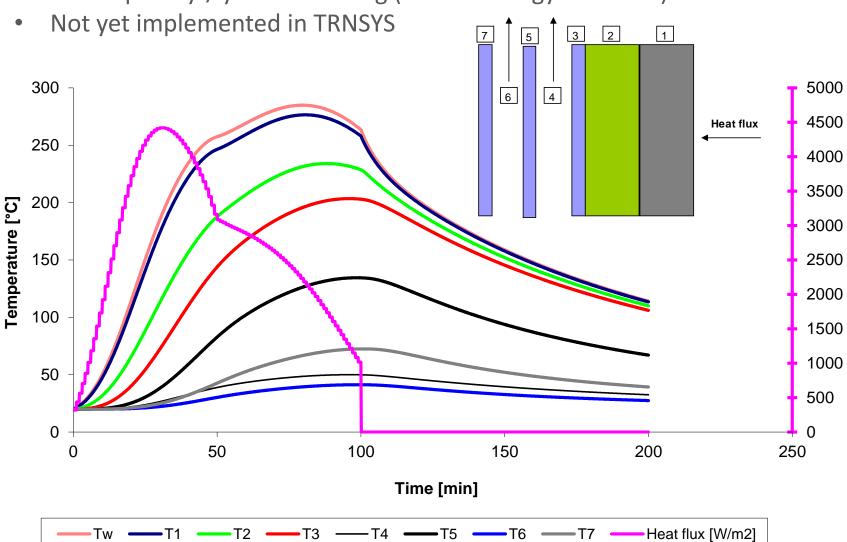


Simplified wood stove model (2)

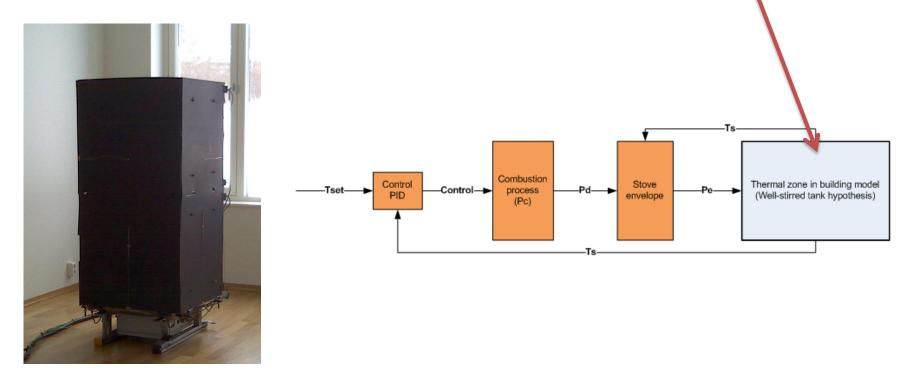
- Batch combustion model for wood logs
 - Developed by Øyvind Skreiberg (SINTEF Energy Research)
 - Semi-empirical model with different phases:
 - Drying
 - Pyrolysis/devolatization
 - Char oxidation/gasification
 - Example of the 8 kW of Pn
 - No modulation (dashed)
 - 50% modulation (solid)
 - 20 kWh batch load (grey)
 - 10 kWh batch load (black)



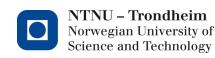
The Research Centre on Zero Emission Buildings


Simplified wood stove model (3)

- Batch combustion model for wood logs
 - Need to account for the real combustion profile and not average power
 - 8kW log stove and 1.25h cycle (black)
 - 8kW constant and 1.25h cycle (grey dashed-dot)

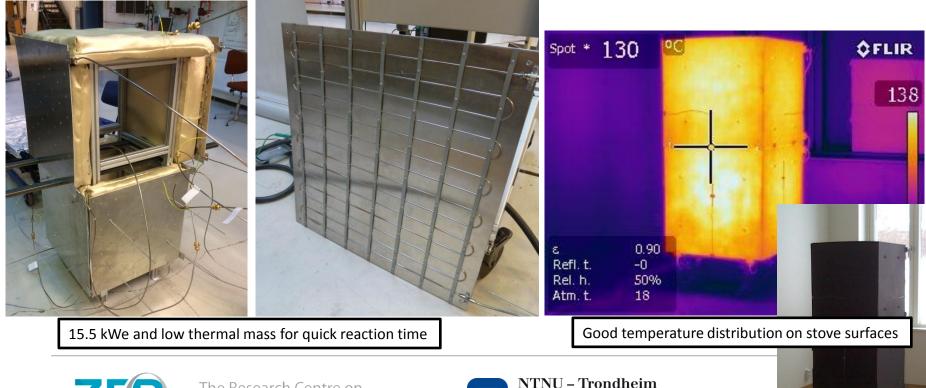

Simplified wood stove model (4)

- Multi-layer 1D heat transfer in walls
 - Developed by Øyvind Skreiberg (SINTEF Energy Research)



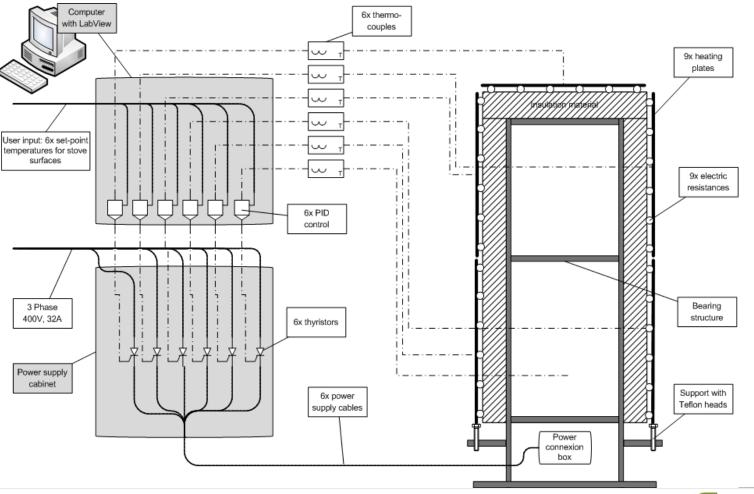
Simplified wood stove model (5)

- Validation of the model for stove and building interaction
- Electric movable stove:
 - Surface temperature profiles imposed
 - Measure the resulting thermal environment in building



Movable electric stove (1)

- Advantages:
 - Does not need to be connected to a stack/chimney
 - Can be implemented temporarily and applied different heat release profiles
 - Electricity enables to control the heat release profile accurately
 - No risk for the IAQ



The Research Centre on Zero Emission Buildings

Movable electric stove (2)

• Principle:

The Research Centre on Zero Emission Buildings

Movable electric stove (3)

- Measurements in passive house
 - Miljø Granåsen project in Trondheim
 - Building of 142 m² heated area
 - Measurements Mars-April 2013
 - Lightweight wooden structure
 - Unoccupied without furniture

First floor

Basement

Ground floor

The Research Centre on Zero Emission Buildings

Movable electric stove (4)

- Measurements in passive house
 - Air temperature distribution in room
 - Wall temperature distribution in room
 - Flow through open door between ground and first floor

Туре	Number	Location	Precision	Measure
PT-100	5	Ground floor	$\pm 0.1^{\circ}$ C	Ts, stratification
	5	Staircase	$\pm 0.1^{\circ}$ C	Ts, stratification
	1	Living-room	$\pm 0.1^{\circ}$ C	Ts, 0.8 m height
	1	Kitchen	$\pm 0.1^{\circ}$ C	Ts, 0.8 m height
	1	Kitchen	$\pm 0.1^{\circ}$ C	Top, 0.8 m height
	7	Walls	$\pm 1^{\circ}$ C	Twall
Radiant temperature transducer INNOVA MM0036	1	Living-room and kitchen	$\pm 0.5^{\circ}$ C	Tmrt, 0.8 m height
Thermocouples Type T	10	Doorway or living-room	$\pm1\% \pm 0.5^\circ$ C	Ts, profile or stratification
Anemometer TSI 8475	10	Doorway	\pm 3% \pm 0.005 m/s	Air velocity profile
Temperature logger	11	Each room	$\pm 0.06^{\circ}$ C	Ts, one by room
iButton Maxim	1	Outdoor	$\pm 0.06^{\circ}$ C	Ts, sheltered
Integrated DS1922L	3	Air Handling Unit	$\pm 0.06^{\circ}$ C	Ts fresh air

Movable electric stove (5)

• Test cases for measurements in passive house

Case	P _n	Modulation	I _{th}	Cycle length
\mathbf{N}°	[kW]	[% of Pn]	[kJ/K]	[min]
1p	6	100	50	90
2p	6	100	150	90
3p	8	30	50	90
4p	8	100	150	90

• Wood log stove (8 test cases)

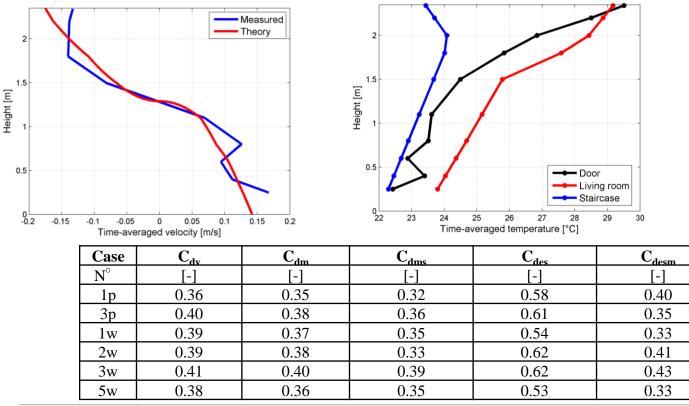
Case	P _n	Modulation	I I _{th}	Batch load
N°	[kW]	[% of Pn]	[kJ/K]	[kWh]
1w	4	50	50	5
2w	4	100	50	5
3w	4	50	50	10
4w	4	100	50	10
5w	8	50	50	10
бw	8	100	50	10
7w	8	50	150	10
8w	8	100	150	10

The Research Centre on Zero Emission Buildings

Movable electric stove (6)

- Conclusion for temperature distribution in room
 - Significant vertical temperature gradient
 - Small horizontal temperature gradient (except with sun)
- Vertical stratification
 - Influence the thermal comfort
 - Enhance the heat transfer with the first floor (through ceiling)

Case	Sun	T _{ext}	$\Delta T_{op,max}$	$\Delta T_{s,hor,max}$	$\Delta T_{s,vert,z1,max}$	$\Delta T_{s,vert,z2,max}$
	Living room	Outside	Kitchen	Ground floor	Ground floor	Staircase
\mathbf{N}°	[Yes-No]	[° C]	[° C]	[° C]	[° C]	[° C]
1p	No	-1	4.5	0.2	11	4.1
2p	No	+8	3.3	0.5	8.1	2.0
4p	No	+5	5.5	1.4	11	5.3
2w	No	+6	4.2	1.5	8.4	6.5
4w	No	+5	6.4	0.6	3.1	5.0
5w	No	+5	4.7	0.3	9.3	5.1
7w	No	+5	4.0	0.4	7.6	4.2
8w	No	+7	5.3	0.8	8.9	3.6
3p	Yes	+4	3.9	2.8	5.5	3.6
1w	Yes	+4	3.8	3.5	4.3	3.7
3w	Yes	+4	6.8	4.6	6.7	7.1
бw	Yes	+4	6.0	4.5	13	7.8



Movable electric stove (7)

- Conclusion for the bidirectional airflow through open door
 - Large opening approximation gives good approximation for the mass flow
 - The convective heat exchange is underestimated if the vertical temperature stratification is not accounted for

The Research Centre on Zero Emission Buildings

Conclusions

- A simplified wood stove model for detailed dynamic simulations was needed
 - Should provide insight into the all-year thermal comfort at an acceptable computational cost
 - An experimental setup has been created to validate the modeling of the stove surface temperature and building interaction (i.e. movable electric stove)
- The main modeling hypotheses seem realistic except for the vertical stratification in the room where the stove is placed
 - Influence the thermal comfort
 - Enhance the conductive heat transfer with the first floor
 - Enhance the convective heat exchange through the door (sensitivity analysis should be done with Cd taken as [0.4;0.8])
- The hypothesis of 1-D heat transfer in the stove envelope remains to be validated

