KTH ROYAL INSTITUTE OF TECHNOLOGY

A Systematic Approach to Real-Time Integrated Energy Performance and Monitoring

A little info about myself:

- MS in Sustainable Energy and Resource Recovery
- 3 years experience in HVAC design
- B.E. in Mechanical Engineering

1. Introduction

- Humlegården Project Swedbank HQ, Sundbyberg
 - Gross area 45,000 m²(offices, restaurants, etc...)
 - Miljöbyggnad Guld (50 kWh/m²)
 - Detailed measurements on a system & zone level
 - Real-time visualization Green Fingerprint

3D model

2. Objectives

- 1. Novel criterion for assessing buildings' energy performance; one that takes into account occupant satisfaction!
- 2. Key parameter selection for fault detection and diagnosis
- 3. Online auto-tuning simulation model
- 4. Real-time visualization
- 5. Off-line predictive control and optimization

2.1 Novel Criterion

How are buildings being assessed nowadays?

2.1 Novel Criterion

Need to consider:

- Quality of service provided
 - Thermal Comfort
 - Productivity
- Environmental Impact
- Performance
- Service Efficiency

2.2 Key Parameter Selection

A detailed simulation model of a building entails thousands of parameters

To obtain an accurate representative model these parameters need to be tuned

Brute-Force tuning of 156 such parameters (screened from 3k+, min-max) requires 5*10⁵² simulations (roughly 2*10²⁸ lifetimes of the known universe!)

Solution: Experience helps!

A Systematic Approach to Real-Time Integrated Energy Performance and Monitoring

2.2 Key Parameter Selection

2.3 Auto-Tuning

Layered approach:

1. Real-time state adjustment control

- 2. On-line key parameter optimization
- 3. Off-line model adjustments

2.4 Real-Time Visualization

HUMLEGÅRDEN GREEN FINGERPRINT

Effects on energy consumption?

2.5 Predictive Control & Optimization

- Manual FDD
- Automatic alarm signaling
- Short-term and long-term forecasting
- What-if scenarios and retrofitting options
- Testing control strategies
- ...and more

Questions?

A Systematic Approach to Real-Time Integrated Energy Performance and Monitoring