

# Potential of PV self-consumption in a residential building with different heating systems

**Buildsim-Nordic 2014** 

Janne Hirvonen <sup>1</sup> Genku Kayo <sup>1</sup> Ala Hasan <sup>2</sup> Kai Sirén <sup>1</sup>

<sup>1</sup> Aalto University Department of Energy Technology <sup>2</sup> VTT Technical Research Center of Finland

### **PV in Finland**

- Residential PV systems may export excess power to the grid
- Export price is 30-50% of import price
- More economical to use power on-site
- Batteries are expensive
- $\Rightarrow$  Store solar electricity as heat.

How are PV economics and self-consumption affected by local electricity-to-heat conversion?



### **Building description**

- Measured electricity demand from a district heated house (120 m<sup>2</sup>)
  - 5300 kWh annual demand
- Simulated thermal demand
  - 2010 Finnish building standard
  - 9500 kWh annual demand
- DHW demand from IEA (200 I/day)
  - 3400 kWh annual demand
- Different heating systems
  - District heating (no PV heating)
  - Heat pump heating (COP 3)
  - Direct electric heating (COP 1)

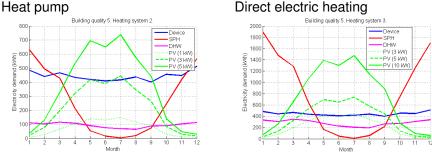


#### **Energy system**

#### Simulated PV generation (TRNSYS)

- Facing south
- Slope 40°
- Practical efficiency 10%
- PV capacity 0 to 10 kW
- PV priority
  - 1. Operate appliances
  - 2. Charge thermal storage
  - 3. Export to grid
- Stratified thermal storage tank




#### **Economic calculations**

- Hourly electricity price (Nord Pool, 2013)
- 4% real interest
- 4% annual energy price rise
- 2.5% annual distribution price rise

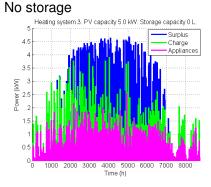


PV self-consumption through heating Janne Hirvonen Aalto

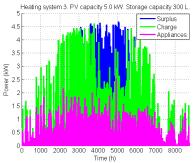
### Mismatch of energy demand and generation



#### Direct electric heating




#### PV self-consumption through heating

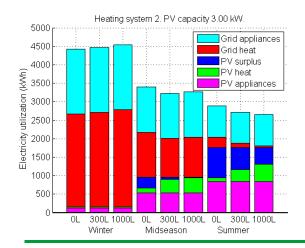

Janne Hirvonen Aalto

6/17 25.09.2014 BuildSim-Nordic

### Hourly PV usage



#### 300 I storage



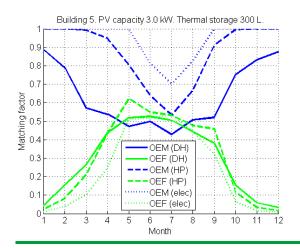



PV self-consumption through heating

7/17 25.09.2014 BuildSim-Nordic 2014

### Seasonal energy usage




- Large tank costs energy in winter
- Small tank best in midseason
- Largest tank best in summer

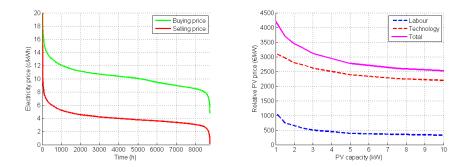
No nighttime heat scheduling utilized



PV self-consumption through heating Janne Hirvonen Aalto

### Monthly energy matching




- OEM = portion of PV energy used on-site
- OEF = portion of energy demand met by PV

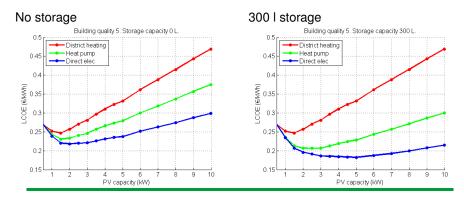


PV self-consumption through heating

9/17 25.09.2014 BuildSim-Nordic 2014

#### **Electricity and PV system price**



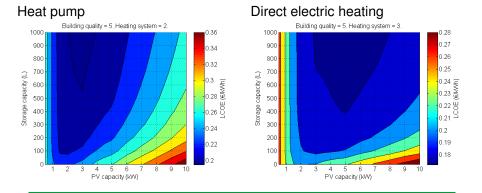



PV self-consumption through heating

10/17 25.09.2014 BuildSim-Nordic 2014

### Levelized cost of PV electricity over 20 years, 1/2

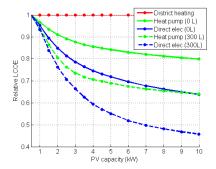
LCOE = (PV price - Discounted savings and exports) / Self-consumed energy






PV self-consumption through heating

### Levelized cost of PV electricity over 20 years, 2/2

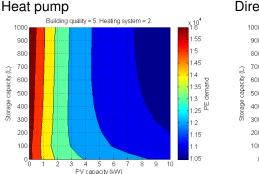

#### LCOE of grid electricity: 0.09 €/kWh



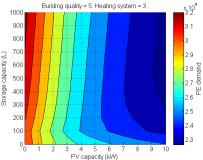


PV self-consumption through heating

### LCOE relative to no PV heating case




## LCOE drops by 25 to 35% with a 3 kW PV system




PV self-consumption through heating Janne Hirvonen Aalto 13/17 25.09.2014 BuildSim-Nordic 2014

### Primary energy demand



#### Direct electric heating





#### PV self-consumption through heating

14/17 25.09.2014 BuildSim-Nordic 2014

#### **Conclusions 1/2**

 Usage of excess PV power for heating increases self-consumption

- by 0.15 to 0.25 with HP
- by 0.30 to 0.45 with direct electric heating
- A 100 I thermal storage is enough to gain most benefits
- PV heating improved LCOE by at least 10%, when PV capacity was 2 kW or more
  - ...but not enough to beat grid prices (17 c/kWh vs. 9 c/kWh)
- 20 years was not enough for system payback



#### **Conclusions 2/2**

- Optimal charge control could improve the situation a little
- Economic residential PV would still need incentives or much higher electricity prices
  - Feed-in tariffs do not encourage self-consumption
  - Self-consumption incentives encourage energy waste
- Future: Communal energy systems?
  - Economies of scale
  - Seasonal storage
  - Shared heat pump or CHP
  - New incentive related to self-consumption and energy demand reduction



#### THANK YOU FOR LISTENING!



PV self-consumption through heating Janne Hirvonen Aalto

17/17 25.09.2014 BuildSim-Nordic 2014