

EVALUATION OF IEQ IN RELATION TO CHOICE OF GLAZING AND SOLAR SHADING IN A RESIDENTIAL BUILDING – SENSITIVITY ANALYSIS WITH MOBO

Matthias Haase

SINTEF Building and Infrastructure

BuildSIm-Nordic Lund 21.09.2017

Agenda

- Intro
 - Background
 - Sensitivity analysis
 - Optimization
- Modelling and simulation
- Results
- Conclusions

Introduction

• Background – skintech Norwegian Research Council energix competence project

WP 5 – Project coordination, dissemination and knowledge transfer								
WP 1 – Advanced window technologies and transparent facades	WP 2 - Innovative facade technologies							
WP 3 – Overall design	concepts for buildings							
WP 4 – Pilot- and den	nonstration buildings							

Sensitivity analysis

- Parameter studies
- I/O analysis
- Optimisation

• In the design of sustainable buildings it is beneficial to identify the most important design parameters in order to develop more efficiently alternative design solutions or reach optimized design solutions.

Optimisation

- Different tools consist of combinations of optimisation algorithms / methods and building performance simulation tools. Examples of tools which have been developed with focus on optimisation of building performance of buildings (energy, comfort, costs, etc.) are:
 - Opt-E-Plus
 - GENE_ARCH
 - BEopt[™]
 - TRNOPT
 - MultiOpt2
 - jEPlus+EA
 - MOBO (Muli-Objective_Optimization)

Typical structure

() SINTEF

MOBO

- MOBO is a generic freeware able to handle single and multi-objective optimization problems with continuous and discrete variables and constraint functions and can be coupled to many external (simulation) programs like IDA-ice.
- It has a an extendable library of different types of algorithms (evolutionary, deterministic, hybrid, exhaustive and random), is able to handle multi-modal functions and has automatic constraint handling.
- Optimisation is possible with the use of different algorithms:
 - Brute-Force algorithm (general problem-solving technique)
 - Random-Search algorithm (RS)
 - Pareto-Archive NSGA-II algorithm (or Pareto optimization)
 - Binary aNSGA-II
 - Hooke-Jeeves (pattern search)

Hooke, R.; Jeeves, T.A. (1961). ""Direct search" solution of numerical and statistical problems". Journal of the Association for Computing Machinery (ACM). **8** (2): 212–229.

MOBO

(Palonen et al. 2013)

Modelling and simulation

Zone	Total 260 m ²
hybel living	1. et.
hybel sleeping	_
hybel bath	_
Entrance	- - -
Disp. basement	
Technical room	
disp room	
training 1	2. et.
Sleeping	_
Hall	_
training 2	_
bath/washing room	
living/kitchen/dinner	3. et.

() SINTEF

Modelling and simulation

	Glazing	g-verdi (SHGC) (-)	T _{vis} (-)	U _{glazing} , W/(m ² K)	Frame fraction (-)	U _{frame} , W/(m² K)	U _{win} , W/(m² K)	Shading
1	© SGG Planitherm Ultra-N 3- panes	0.423	0.314	0.703	0.1	2	0.8327	No integrated shading
2	© SGG COOL-LITE SKN-174 3- panes	0.302	0.215	0.702	0.1	2	0.8318	No integrated shading
3	© SGG Planitherm Ultra-N 3- panes	0.041	0.014	0.626	0.1	2	0.825	With integrated shading

Modelling and simulation

- Documentation of thermal comfort with software IDA ICE
 - Daylight conditions (Daylight factor)
 - Hybrid ventilation strategies
 - Summer temperatures
 - Thermal comfort in selected zones for a warm summer day
 - Daylight values were calculated as average values for the whole year

- 1. without solar shading (g-value 0,423)
- 2. with solar shading glass (g-value 0,302)
- 3. with external solar shading (Screens with g-value in closed position 0,04)
- 4. with solar shading AND natural ventilation (window opening)

without (blue), with solar glazing (yellow), with external screen (red) og with window opening (grey)

Comfort

Daylight

Conclusions

- Glazing with solar shading reduces operative temperatures and thermal comfort (down to under 72% PPD in July).
- Window opeing can be an effective way to reduce maximum indoor temperatures.
- Daylight conditions reduce for glazing with solar shading.
- Daylight levels in the different zones is satisfactory both for glazing wiht and without shading.

Conclusions

- MOBO works as a design optimizer (with IDA-ICE as simulation engine).
- Dynamic optimisation is difficult to represent in functions (objective function).
- Detailed simulation gives a lot a results (data). It is difficult to focus on the most important ones.
- Can also be used for cost optimisation.
- Can also be used for goal optimisation (maximum investment → best design solution (value for money)

References

- Nguyen, Reiter, and Rigo 2014, A review on simulation-based optimization methods applied to building performance analysis, Applied Energy, 113, pp. 1043-1058
- Palonen, M., Hamby, M. and Hasan, A. (2013), MOBO A NEW SOFTWARE FOR MULTI-OBJECTIVE BUILDING PERFORMANCE OPTIMIZATION, Proceedings of BS13, Chambery, France, 26-28 August

Teknologi for et bedre samfunn