Design of a modulating heat pump system and the impact on the seasonal coefficient of performance

John Clauß, Laurent Georges

PhD Candidate Norwegian University of Science and Technology

Introduction

Idea for customized control

Parametric runs for sizing

Impact of different measures on the system sizing

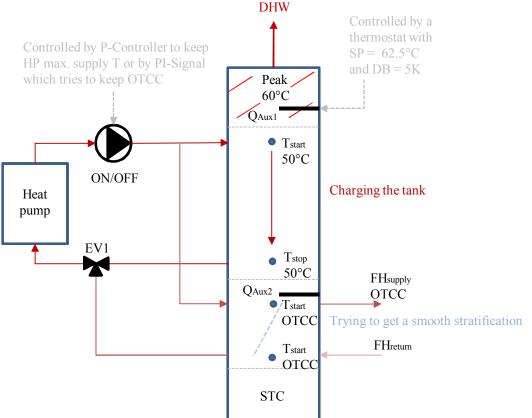
Conclusion and further work

Introduction

Background

- Testing control strategies for demand side management by using the ESBO plant layout of IDA ICE not always possible
- Sizing of heat pump systems, here capacity of the heat pump and electric back-up, based on design outdoor temperature (DOT) at the location

Motivation


- Setting up a customized control for the heat pump based on temperatures in the tank, rather than the state-of-charge (SOC)
- Finding an optimal system configuration which minimizes electricity use for heating

Heat pump control

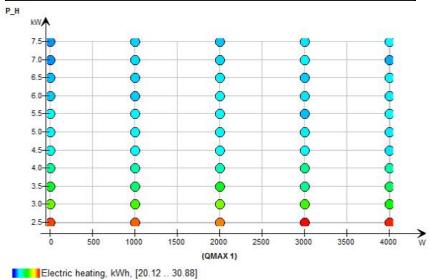
Control idea

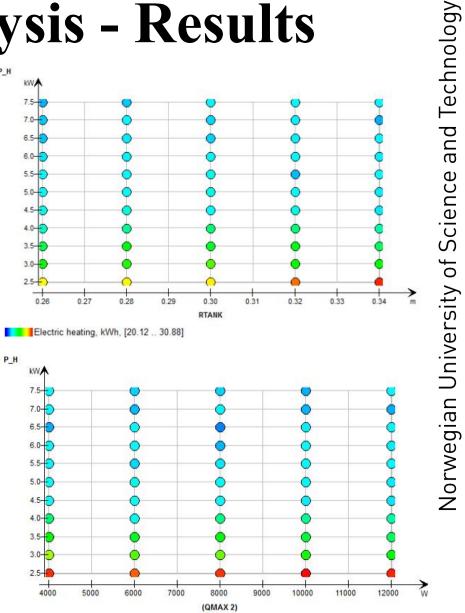
- Heat pump supplies heat for SH (at OTCC) and DHW (at 60-65°C)
- If required. DHW is heated by Q_{Aux1} with 3kW heating capacity (On/off)
- If requried. SH is heated by Q_{Aux2} with 9kW heating capacity (On/Off)
- Several temperature sensors are applied for the temperature control of the two parts of the tank

Parametric analysis

Parameter	Range	Step
HP capacity [kW]	[2.5 - 7.5]	0.5
Tank radius [m] Corr. Volume [l]	[0.26 – 0.34] [425 – 726]	0.02
El. back-up DHW Q _{Aux1} [W]	[0 - 4000]	1000
El. back-up SH Q _{Aux2} [W]	[4000 - 12000]	2000

GenOpt algorithm: Hybrid GPS/PSO algorithm


- PSO: Particle swarm algorithm
- GPS: Generalized pattern search
- First. the PSO performs a global search
- Afterwards, the GPS does a local search starting with the best solutions reached by the PSO to improve the exploration and achieve adequate accuracy



Parametric analysis - Results

Optimal configuration with regards to minimizing electrical heating

Heating calculation DOT=-19°C									
HP capacity	WT radius	QMax1	QMax2	Electric heating					
[kW]	[m]	[W]	[W]	[kWh]					
7.5	0.26	0	10000	20.12					
7.5	0.26	0	6000	20.15					
4.5	0.28	0	12000	21.26					
7.5	0.26	3000	10000	21.63					
6.5	0.3	3000	6000	22.67					
3.5	0.28	3000	8000	24.97					
3.5	0.3	4000	10000	25.08					
2.5	0.34	3000	10000	30.88					

Electric heating, kWh, [20.12 .. 30.88]

IBPSA Nordic 2017 – John Clauß

Results for system sizing

	Annual calcula	tion for 2015					
	HP capacity	WT radius	QMax1	QMax2	Electric	SCOP	Nr. of HP
	[kW]	[m]	[W]	[W]	heating [kWh]		cycles
Case 1	7.5	0.26	0	10000	1744	3.17	6405
Case 2	7.5	0.26	0	6000	1743	3.20	6401
Case 2 Case 3	4.5	0.28	0	12000	1625	3.94	4476
Case 4	7.5	0.26	3000	10000	2181	3.08	6419
Case 5	6.5	0.30	3000	6000	2294	3.84	3081
Case 6	3.5	0.28	3000	8000	2191	4.25	3541
Case 7	3.5	0.30	4000	10000	2268	4.36	3184
Case 8	2.5	0.34	3000	10000	2321	4.30	1817
Case 9	3.2	0.29	3000	9000	2252	4.33	3105

and Technology Norwegian University of Science

Conclusion and further work

Conclusion

- Presentation of preliminary results
- The use of electric back-up heaters decreases the COP slightly (cases 1, 2, 4)
- Combination of smallest heat pump capacity and biggest storage tank leads to highest electricity use for heating. but also to lowest number of cycles of the heat pump per year
- The optimal configuration from heating simulations at DOT does not give the lowest electricity use for heating over an annual period

Further work

- Improving the heat pump control in the model
 - Temperature set-points for the hysteresis
 - Include minimum cycling time and minimum pause times for the heat pump
- Implement a control for charging the thermal mass of a building

Thanks for your attention! ③

IBPSA Nordic 2017 – John Clauß